Task goals influence online corrections and adaptation of reaching movements.
نویسندگان
چکیده
Everyday movements often have multiple solutions. Many of these solutions arise from biomechanical redundancies. Often, however, the goal does not require a unique movement. To examine how people exploit task-related redundancy, we observed as participants produced three-dimensional (3-D) reaching movements, moving to one of two rectangular targets that were diagonally oriented in the frontal (x, y) plane. On most trials, the movement was perturbed by a vertical, velocity-dependent force. Since participants were free to move in 3-D space, online corrections could involve movement along the perturbed, vertical dimension, as well as the nonperturbed, horizontal dimension. If the motor system exploits task redundancies, then corrections along the horizontal dimension should depend on the orientation of the target. Consistent with this prediction, participants modified both the horizontal and vertical coordinates of the trajectory over the course of learning, and the horizontal component was sensitive to the orientation of the target. Furthermore, participants produced online corrections with a horizontal component that brought the hand closer to the target. These results suggest that we not only correct for mismatches between expected and experienced forces but also exploit task-specific redundancies to efficiently improve performance.
منابع مشابه
1 2 Title : Task goals influence online corrections and adaptation of reaching movements 3 4 5 6
32 33 Everyday movements often have multiple solutions. Many of these solutions arise from biomechanical 34 redundancies. Often, however, the goal does not require a unique movement. To examine how people 35 exploit task-related redundancy, participants produced three-dimensional reaching movements, moving 36 to one of two rectangular targets that were diagonally oriented in the frontal (X, Y) ...
متن کاملOptimal Task-Dependent Changes of Bimanual Feedback Control and Adaptation
The control and adaptation of bimanual movements is often considered to be a function of a fixed set of mechanisms [1, 2]. Here, I show that both feedback control and adaptation change optimally with task goals. Participants reached with two hands to two separate spatial targets (two-cursor condition) or used the same bimanual movements to move a cursor presented at the spatial average location...
متن کاملResponse modes influence the accuracy of monocular and binocular reaching movements.
The authors manipulated the availability of monocular and binocular vision during the constituent planning and control stages of a goal-directed reaching task. Furthermore, trials were completed with or without online limb vision to determine whether monocular- or binocular-derived ego-motion cues influence the integration of visual feedback for online limb corrections. Results showed that the ...
متن کاملSensory prediction errors drive cerebellum-dependent adaptation of reaching.
The cerebellum is an essential part of the neural network involved in adapting goal-directed arm movements. This adaptation might rely on two distinct signals: a sensory prediction error or a motor correction. Sensory prediction errors occur when an initial motor command is generated but the predicted sensory consequences do not match the observed values. In some tasks, these sensory errors are...
متن کاملOnline gain update for manual following response accompanied by gaze shift during arm reaching.
To capture objects by hand, online motor corrections are required to compensate for self-body movements. Recent studies have shown that background visual motion, usually caused by body movement, plays a significant role in such online corrections. Visual motion applied during a reaching movement induces a rapid and automatic manual following response (MFR) in the direction of the visual motion....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 5 شماره
صفحات -
تاریخ انتشار 2011